Общие сведения о механических накопителях энергии. Аккумуляторы различных видов

Содержание

Механические накопители энергии

Общие сведения о механических накопителях энергии. Аккумуляторы различных видов

Замечание 1

Накопителем энергии можно назвать систему, которая дает возможность аккумулирования энергии какого-либо вида за время заряда, и передачи этой энергии спустя время ее потребителю за период разряда для совершения полезной работы.

Аккумуляторы энергии бывают:

  • электрическими,
  • тепловыми,
  • механическими.

Изобрел прибор для накопления механической энергии Армстронг. Его прибор был основан на поднимании на высоту груза или на воздухе под высоким давлением.

Основными направлениями применения накопителей энергии считают:

  • аккумулирование лишней на какой-то момент времени энергии и использование ее при необходимости;
  • трансформирования одного вида энергии в другую, преобразование характеристик энергии.

Механическая энергия – это энергия перемещения (поступательного движения и вращения) и энергия взаимодействия тел или их частей, то есть кинетическая и потенциальная энергия.

Для механических накопителей (как и любого другого вида накопителей энергии) характерными режимами работы стали:

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

  • накопление энергии (заряд),
  • отдача энергии (разряд),
  • хранение энергии – промежуточный режим.

В режиме заряда к механическому накопителю подводится механическая энергия от внешнего источника. Конкретный тип реализации источника определен типом механического накопителя.

В состоянии разряда большая часть запасенной энергии отдается накопителем потребителю. Небольшая доля накопленной энергии теряется в режиме хранения и имеются потери в режиме разряда.

Разнообразие механических накопителей энергии

Механические накопители энергии применяются с древних времен. Их несомненными плюсами являются:

  • конструктивная простота;
  • неограниченный срок хранения запасенной энергии;
  • большая надежность;
  • исключительно длительный срок эксплуатации.

Основным недостатком механических накопителей считают малую удельную плотность запасаемой ими энергии.

Выделим следующие группы механических аккумуляторов энергии:

  1. Гравитационные механические накопители.
  2. Кинетические механические накопители
  3. Накопители, использующие силы упругости.

Механические накопители можно разделить на:

  • статические,
  • динамические,
  • комбинированные.

Статические накопители механической энергии аккумулируют энергию:

  • при упругом изменении формы (объема) рабочего тела;
  • при его движении против сил тяжести в поле гравитации.

Рабочее тело данных накопителей статично в режиме хранения, в состоянии заряда и разряда рабочее тело движется.

Динамические накопители копят кинетическую энергию (в основном) в массивных твердых телах, находящихся во вращении. Примером динамических механических аккумуляторов энергии можно считать накопительные устройства ускорителей элементарных частиц, запасающих кинетическую энергию заряженных частиц, циклически перемещающихся по замкнутым траекториям.

Комбинированные накопители механической энергии аккумулируют и кинетическую, и потенциальную энергию. Таким накопителем считают супермаховик из сверхпрочного волокнистого материала с малым модулем упругости. В этом маховике аккумулируется кинетическая энергия и потенциальная энергия упругой деформации.

Гравитационные механические накопители

Эти накопители используют тот факт, что каждое тело, поднятое на некоторую высоту $h$ над Землей, обладает потенциальной энергией, которая способна переходить в кинетическую энергию этого тела при его опускании. При этом потенциальную энергию вычисляют при помощи формулы:

$E_p=mgh (1),$

где $m$ – масса тела, поднятого над уровнем земли; $g$ – ускорение свободного падения.

В среде гравитационных механических накопителей выделяют:

  • жидкостные накопители;
  • твердотельные накопители.

В жидкостных гравитационных накопителях в качестве рабочего тела используют жидкость, в этой связи у накопителей данного вида имеется ряд недостатков, например:

  • жидкость может быстро испаряться;
  • малая плотность рабочего тела, которая приводит к росту конструктивных размеров.

К преимуществам твердотельных накопителей относят небольшую стоимость. Существенным недостатком можно считать большую массу накопителя и большой размер. Как пример твердотельного гравитационного накопителя можно рассматривать каждый груз, поднятый выше, чем находится уровень избранной поверхности.

Кинетические накопители энергии

Среди кинетических механических накопителей энергии можно выделить:

  • колебательные накопители,
  • гироскопические накопители.

Колебательные накопители кинетической энергии аккумулируют энергию возвратно – поступательном движении груза в состоянии резонанса. Движения груза могут быть как поступательные, так и вращение.

В этих накопителях энергия поступает и расходуется порционно, совпадая с движениями груза. Необходимость создания условий резонанса ведет к существенному усложнению механизма и делает его зависимым от настройки.

Данные накопители применяются в механических часах, имеющих пружинный или гравитационный маятник.

Гироскопические накопители аккумулируют энергию маховика, который находится во вращении с большой скоростью. В настоящее время запасаемая при помощи маховика энергия достигла 3 ГДж/кг. Удельная энергия данного накопителя существенно выше, чем она же у гравитационного накопителя. К преимуществам маховиков относят возможность передачи и получения почти неограниченную мощность.

К недостаткам этих накопителей относят:

  • их высокую стоимость;
  • сложность изготовления;
  • высокая скорость вращения маховика требует наличие сложной системы трансформации крутящего момента.

Механические накопители энергии, использующие силы упругости

Удельная емкость аккумулируемой энергии этих накопителей очень велика. Учитывая малые габариты накопителей, их энергетическая емкость обладает самым большим значением в среде механических накопителей. Массивные маховики, имеющие большие скорости вращения обладают большей энергетической емкостью в сравнении с накопителями, использующими силы упругости. Однако последние:

  • могут иметь гораздо меньшую массу;
  • меньше чувствительны к факторам окружающей среды;
  • имеют большее время хранения энергии.

Существуют накопители энергии на основе сжатого воздуха. Данные аккумулятора накапливают энергию за счет упругости сжатого газа. Газ закачивают в баллон. В случае необходимости получения электрической энергии, газ под давлением из баллона подают на турбину, которая выполняет механическую работу или вращает электрический генератор.

Если необходима небольшая мощность, то вместо турбины пользуются поршневым двигателем, который оказывается в этом случае более эффективным. Почти любой компрессор в настоящее время имеет подобный накопитель, который называют ресивером. С увеличением давления воздуха, больше энергии запасают в одном и том же объеме.

Так получают большие потоки энергии.

Источник: https://spravochnick.ru/fizika/mehanicheskie_nakopiteli_energii/

Какие бывают накопители энергии: виды, преимущества, типы батарей

Общие сведения о механических накопителях энергии. Аккумуляторы различных видов

Природа подарила человеку разнообразные источники энергии: солнце, ветер, реки и другие. Недостатком этих генераторов бесплатной энергии является отсутствие стабильности. Поэтому в периоды избытка энергии ее запасают в накопителях и расходуют в периоды временного спада. Накопители энергии характеризуют следующие параметры:

  • объем запасаемой энергии;
  • скорость ее накопления и отдачи;
  • удельная плотность;
  • сроки хранения энергии;
  • надежность;
  • стоимость изготовления и обслуживания и другие.

Методов систематизации накопителей множество. Одним из самых удобных является классификация по типу энергии, используемой в накопителе, и по способу ее накопления и отдачи. Накопители энергии подразделяются на следующие основные виды:

  • механические;
  • тепловые;
  • электрические;
  • химические.

Накопление потенциальной энергии

Суть этих устройств незамысловата. При подъеме груза происходит накопление потенциальной энергии, при опускании она совершает полезную работу. Особенности конструкции зависят от вида груза. Это может быть твердое тело, жидкость или сыпучее вещество.

Как правило, конструкции устройств этого типа предельно просты, отсюда высокая надежность и длительный срок службы. Время хранения запасенной энергии зависит от долговечности материалов и может достигать тысячелетий.

К сожалению, такие устройства обладают низкой удельной энергоемкостью.

Механические накопители кинетической энергии

В этих устройствах энергия хранится в движении какого-либо тела. Обычно это колебательное или поступательное движение.

Кинетическая энергия в колебательных системах сосредоточена в возвратно-поступательном движении тела. Энергия подается и расходуется порциями, в такт с движением тела. Механизм достаточно сложный и капризный в настройке. Широко используется в механических часах. Количество запасаемой энергии обычно невелико и годится только для работы самого устройства.

Накопители, использующие энергию гироскопа

Запас кинетической энергии сосредоточен во вращающемся маховике. Удельная энергия маховика значительно превосходит энергию аналогичного статического груза. Имеется возможность в короткий промежуток времени производить прием или отдачу значительной мощности. Время хранения энергии невелико, и для большинства конструкций ограничено несколькими часами.

Современные технологии позволяют довести время хранения энергии до нескольких месяцев. Маховики очень чувствительны к сотрясениям. Энергия устройства находится в прямой зависимости от скорости его вращения. Поэтому в процессе накопления и отдачи энергии происходит изменение скорости вращения маховика.

А для нагрузки, как правило, требуется постоянная, невысокая скорость вращения.

Более перспективными устройствами являются супермаховики. Их изготавливают из стальной ленты, синтетического волокна или проволоки. Конструкция может быть плотной или иметь пустое пространство.

При наличии свободного места витки ленты перемещаются к периферии вращения, момент инерции маховика изменяется, часть энергии запасается в подвергшейся деформации пружине.

В таких устройствах скорость вращения более стабильна, чем в цельнотелых конструкциях, а их энергоемкость гораздо выше. Кроме того, они более безопасны.

Современные супермаховики изготовляют из кевларового волокна. Они вращаются в вакуумной камере на магнитном подвесе. Способны сохранять энергию несколько месяцев.

Механические накопители, использующие силы упругости

Этот тип устройств способен запасать огромную удельную энергию. Из механических накопителей он обладает наибольшей энергоемкостью для устройств с габаритами в несколько сантиметров. Большие маховики с очень высокой скоростью вращения имеют гораздо большую энергоемкость, но они очень уязвимы от внешних факторов и имеют меньшее время хранения энергии.

Механические накопители, использующие энергию пружины

Способны обеспечить самую большую механическую мощность из всех классов накопителей энергии. Она ограничена лишь пределом прочности пружины. Энергия в сжатой пружине может храниться несколько десятилетий.

Однако из-за постоянной деформации в металле накапливается усталость, и емкость пружины снижается.

В то же время высококачественные стальные пружины при соблюдении условий эксплуатации могут работать сотни лет без ощутимой потери емкости.

Функции пружины могут выполнять любые упругие элементы. Резиновые жгуты, например, в десятки раз превосходят стальные изделия по запасаемой энергии на единицу массы. Но срок службы резины из-за химического старения составляет всего несколько лет.

Механические накопители, использующие энергию сжатых газов

В этом типе устройств накопление энергии происходит за счет сжатия газа. При наличии избытка энергии газ при помощи компрессора закачивается под давлением в баллон.

По мере необходимости сжатый газ используется для вращения турбины или электрогенератора. При небольших мощностях вместо турбины целесообразно использовать поршневой мотор.

Газ в емкости под давлением в сотни атмосфер обладает высокой удельной плотностью энергии в течение нескольких лет, а при наличии качественной арматуры – и десятки лет.

Накопление тепловой энергии

Большая часть территории нашей страны расположена в северных районах, поэтому значительная часть энергии вынужденно расходуется для обогрева. В связи с этим приходится регулярно решать проблему сохранения тепла в накопителе и извлечении его оттуда при необходимости.

В большинстве случаев не удается достичь высокой плотности запасаемой тепловой энергии и сколько-нибудь значительных сроков ее сохранения. Существующие эффективные устройства в силу ряда своих особенностей и высокой цены не подходят для широкого применения.

Накопление за счет теплоемкости

Это один из самых древних способов. В его основе лежит принцип накопления тепловой энергии при нагревании вещества и отдачи тепла при его охлаждении. Конструкция таких накопителей чрезвычайно проста.

Им может быть кусок любого твердого вещества либо закрытая емкость с жидким теплоносителем. Накопители тепловой энергии имеют очень большой срок службы, практически неограниченное количество циклов накопления и отдачи энергии.

Но время хранения не превышает нескольких суток.

Аккумулирование электрической энергии

Электрическая энергия – это самая удобная ее форма в современном мире. Именно поэтому электрические накопители получили широкое распространение и наибольшее развитие. К сожалению, удельная емкость дешевых аппаратов невелика, а приборы с большой удельной емкостью слишком дороги и недолговечны. Накопители электрической энергии – это конденсаторы, ионисторы, аккумуляторы.

Конденсаторы

Это самый массовый вид накопителей энергии. Конденсаторы способны работать при температуре от -50 до +150 градусов. Количество циклов накопления-отдачи энергии – десятки миллиардов в секунду.

Соединяя несколько конденсаторов параллельно, можно легко получить емкость необходимой величины. Кроме того, существуют переменные конденсаторы.Изменение емкости таких конденсаторов может производиться механическим или электрическим способом либо воздействием температуры.

Чаще всего переменные конденсаторы можно встретить в колебательных контурах.

Конденсаторы делятся на два класса – полярные и неполярные. Срок службы полярных (электролитических) меньше, чем неполярных, они больше зависят от внешних условий, но в то же время обладают большей удельной емкостью.

Как накопители энергии конденсаторы – не очень удачные приборы. Они имеют малую емкость и незначительную удельную плотность запасаемой энергии, а время ее хранения исчисляется секундами, минутами, редко часами. Конденсаторы нашли применение в основном в электронике и силовой электротехнике.

Расчет конденсатора, как правило, не вызывает затруднений. Вся необходимая информация по разным типам конденсаторов представлена в технических справочниках.

Ионисторы

Эти приборы занимают промежуточное место между полярными конденсаторами и аккумуляторами. Иногда их называют «суперконденсаторами». Соответственно, они имеют огромное количество этапов заряда-разряда, емкость больше, чем у конденсаторов, но немного меньше, чем у небольших аккумуляторов. Время хранения энергии – до нескольких недель. Ионисторы очень чувствительны к температуре.

Силовые аккумуляторы

Электрохимические аккумуляторы используются, если требуется запасать достаточно много энергии. Лучше всего для этой цели подходят свинцово-кислотные приборы. Их изобрели около 150 лет назад. И с тех пор в устройство аккумулятора не внесли ничего принципиально нового.

Появилось много специализированных моделей, значительно возросло качество комплектующих изделий, повысилась надежность аккумуляторной батареи.

Примечательно, что устройство аккумулятора, созданного разными производителями, для разных целей отличается лишь в незначительных деталях.

Электрохимические аккумуляторы подразделяются на тяговые и стартовые. Тяговые используются в электротранспорте, источниках бесперебойного питания, электроинструментах. Для таких аккумуляторов характерны длительный равномерный разряд и большая его глубина. Стартовые аккумуляторы могут выдать большой ток в короткий промежуток времени, но глубокий разряд для них недопустим.

Электрохимические аккумуляторы имеют ограниченное количество циклов заряда-разряда, в среднем от 250 до 2000. Даже при отсутствии эксплуатации через несколько лет они выходят из строя. Электрохимические аккумуляторы чувствительны к температуре, требуют длительного времени заряда и строгого соблюдения правил эксплуатации.

Прибор необходимо периодически подзаряжать. Заряд аккумулятора, установленного на транспортное средство, производится в движении от генератора.

В зимнее время этого недостаточно, холодная батарея плохо принимает заряд, а потребление электроэнергии на запуск двигателя возрастает.

Поэтому необходимо дополнительно проводить заряд аккумулятора в теплом помещении специальным зарядным устройством. Одним из существенных недостатков свинцово-кислотных приборов является их большой вес.

Аккумуляторы для маломощных устройств

Если требуются мобильные устройства с малым весом, то выбирают следующие типы аккумуляторов: никель-кадмиевые, литий-ионные, металл-гибридные, полимер-ионные. У них выше удельная емкость, но и цена много больше.

Их применяют в мобильных телефонах, ноутбуках, фотоаппаратах, видеокамерах и других малогабаритных устройствах.

Разные типы аккумуляторов отличаются своими параметрами: количеством циклов зарядки, сроком хранения, емкостью, размером и т. п.

Литий-ионные аккумуляторы большой мощности применяют в электромобилях и гибридных машинах. Они имеют небольшой вес, большую удельную емкость и высокую надежность.

В то же время литий-ионные аккумуляторы очень пожароопасны. Возгорание может произойти от короткого замыкания, механической деформации или разрушения корпуса, нарушений режимов заряда или разряда аккумулятора.

Потушить пожар довольно трудно из-за высокой активности лития.

Аккумуляторы являются основой многих приборов. Например, накопитель энергии для телефона – это компактный внешний аккумулятор, помещенный в прочный, влагозащищенный корпус. Он позволяет зарядить или запитать сотовый телефон. Мощные мобильные накопители энергии способны заряжать любые цифровые аппараты, даже ноутбуки.

В таких устройствах устанавливают, как правило, литий-ионные аккумуляторы большой емкости. Накопители энергии для доматакже необходятся без аккумуляторных батарей. Но это гораздо более сложные устройства. Кроме аккумулятора в их состав входят зарядное устройство, система управления, инвертор. Аппараты могут работать как от стационарной сети, так и от других источников.

Выходная мощность в среднем составляет 5 кВт.

Накопители химической энергии

Различают «топливные» и «безтопливные» типы накопителей. Для них требуются специальные технологии и нередко громоздкое высокотехнологичное оборудование. Используемые процессы позволяют получать энергию в разных видах.

Термохимические реакции могут проходить как при низкой, так и при высокой температуре. Компоненты для высокотемпературных реакций вводят только тогда, когда необходимо получить энергию. До этого их хранят отдельно, в разных местах.

Компоненты для низкотемпературных реакций обычно находятся в одной емкости.

Накопление энергии наработкой топлива

Этот способ включает два совершенно независимых этапа: накопление энергии («зарядка») и ее использование («разрядка»).

Традиционное топливо, как правило, обладает большой удельной емкостью энергии, возможностью продолжительного хранения, удобством использования. Но жизнь не стоит на месте.

Внедрение новых технологий предъявляет повышенные требования к топливу. Задача решается путем улучшения существующих и создания новых, высокоэнергетических видов топлива.

Широкому внедрению новых образцов препятствует недостаточная отработанность технологических процессов, большая пожаро- и взрывоопасность в работе, необходимость высококвалифицированного персонала, высокая стоимость технологии.

Безтопливное химическое накопление энергии

В этом виде накопителей энергия запасается за счет преобразования одних химических веществ в другие. Например, гашеная известь при нагреве переходит в негашеное состояние. При “разрядке” запасенная энергия выделяется в виде тепла и газа.

Именно так происходит при гашении извести водой. Для того чтобы реакция началась, обычно достаточно соединить компоненты. В сущности, это вид термохимической реакции, только протекает она при температуре в сотни и тысячи градусов.

Поэтому используемое оборудование гораздо сложнее и дороже.

Источник: https://autogear.ru/article/190/701/kakie-byivayut-nakopiteli-energii/

Какие бывают накопители энергии

Общие сведения о механических накопителях энергии. Аккумуляторы различных видов

Природа подарила человеку разнообразные источники энергии: солнце, ветер, реки и другие. Недостатком этих генераторов бесплатной энергии является отсутствие стабильности. Поэтому в периоды избытка энергии ее запасают в накопителях и расходуют в периоды временного спада. Накопители энергии характеризуют следующие параметры:

  • объем запасаемой энергии;
  • скорость ее накопления и отдачи;
  • удельная плотность;
  • сроки хранения энергии;
  • надежность;
  • стоимость изготовления и обслуживания и другие.

Методов систематизации накопителей множество. Одним из самых удобных является классификация по типу энергии, используемой в накопителе, и по способу ее накопления и отдачи. Накопители энергии подразделяются на следующие основные виды:

  • механические;
  • тепловые;
  • электрические;
  • химические.

Накопитель энергии – широкий класс устройств, механика работы части из которых неочевидна и не знакома среднестатистическому индивидууму

Общие сведения о механических накопителях энергии. Аккумуляторы различных видов

Накопитель энергии – устройство, с которым большинство из людей постоянно сталкивается в быту. Всем знаком аккумулятор мобильного телефона, автомобиля, пальчиковые батарейки, которые не предусматривают повторной зарядки.

Однако понятие энергетического накопления гораздо шире представлений среднестатистического индивидуума. Есть множество теорий, футуристических проектов и изысканий.

Но интересно посмотреть, что реально может накапливать энергию и уже используется в самых разных областях деятельности человека.

Потенциальная энергия

Самый неочевидный накопитель собирает показатель потенциала, поднятого на высоту тела. Это устройство знакомо многим. Часы-ходики с массивными грузиками используют именно физический потенциал.

Пока одна из гирь опускается, механизм работает. Для накопления запаса энергии требуется завести часы – переместить грузы определенным способом.

Другие аккумуляторы потенциала работают не таким очевидным способом.

Гидроэлектростанции

Гидроэлектростанция – самый большой энергетический накопитель потенциального типа. Работает это следующим образом:

  • главная часть гидроэлектрической станции – огромная плотина. Она замыкает большую территорию, создавая водохранилище, которое наполняется рекой или другим источником воды;
  • в основании железобетонной стены станции находится основное инженерное решение для производства электричества. Падающая с большой высоты вода преобразует свою потенциальную энергию в кинетическую;
  • при воздействии потока воды на лопатки турбины кинетика преобразуется в электричество.

Гидроэлектростанции классического типа, а точнее, их водохранилища – накопители энергии потенциального типа. Этот источник относится к возобновляемому. Поток воды постоянно пополняет искусственное озеро, при этом предусмотрены методики отвода жидкости в период, когда объем водохранилища на максимуме, а потребности в производстве электричества нет.

Энергетические накопители потенциального типа несколько другого принципа действия используются в аккумулирующих резервуарах гидроэлектростанций. Такой тип инженерных решений относится к вспомогательному и применяется в совокупности с другим источником. Часто – в солнечных электростанциях, построенных в местностях с мягким климатом. Работает все следующим образом:

  • в период максимальной солнечной активности электроэнергия, которую производит солнечная станция, не нужна, потребности городов и энергосети, в общем, малы;
  • электричество направляется на работу насосов, которые закачивают воду в огромный искусственный резервуар;
  • в темное время суток, если нужно направить дополнительный поток электрической мощности в общую систему, включается механика гидроэлектростанции. Потенциал накопленной воды используется для работы турбин.

Станции, которые используют накопители энергии воды, становятся все более популярными. К достоинствам такого решения относится способность не только полностью использовать мощности основного производителя, но и гарантировать круглосуточный режим отдачи электричества в общую сеть.

Существуют и решения, оперирующие твердым грузом. К ним относятся системы, построенные на простой идее:

  • во время работы солнечных батарей или ветрогенераторов излишек их мощности направляется на двигатели, которые перемещают вагоны по рельсовому пути вверх, по наклонной поверхности;
  • в то время, когда солнца или ветра нет, тележки двигаются вниз, на их осях расположены генераторы, производящие электричество.

Достоинств у механического решения предостаточно. Здесь малые требования к мощности двигателей, используемых для подъема груза. Для перекачки воды нужно несравненно большие величины как токов, так и давления.

Накопители потенциальной энергии имеют одно неоспоримое достоинство: запасенное можно хранить практически без потерь крайне долго. Потери воды в огромном резервуаре из-за испарения почти незаметны, а если идет речь о поднятии груза, его легко зафиксировать механически в верхней точке.

Недостаток сбора потенциальной энергии также очевиден. Чтобы получить промышленные объемы использования или долговременную работу устройства в быту, нужно или оперировать огромными массами, так сказать, энергоносителя, или гарантировать низкое потребление преобразованной энергии.

Накопители тепловой энергии

Тепловые накопители – распространенные устройства. Самый знакомый рядовому потребителю – электрический нагревательный котел. Он накапливает тепло, которое затем используется для бытовых нужд, отопления.

Менее понятный класс – тепловые накопители энергии, выполняющие роль стабилизаторов. К ним относятся:

  • водонагреватели, построенные на вторичной схеме передачи тепла;
  • расширительные емкости солнечных коллекторов, которые не допускают перегрева теплоносителя и стабилизируют режим работы батареи;
  • теплоаккумулятор может строиться на принципе фазового перехода. Расплав нагревается до высокой температуры, при этом теплоноситель переходит из твердого состояния в жидкое.

Проблем у накопителей тепловой энергии достаточно много. К примеру:

  • энергию нужно использовать быстро. С течением времени содержимое накопителя просто теряет энергию, отдавая ее в окружающую среду;
  • построенные на фазовом переходе накопители сложны в эксплуатации. Здесь наблюдается изменение объема: если жидкость переводят в пар, приходится бороться с огромным давлением.

Современные системы тепловой защиты позволяют долго сохранять характеристики накопителя тепловой энергии. Но здесь играет роль баланса стоимости защиты и целевого использования энергии. Поэтому накопители тепла идеальны в роли компенсаторов. В это же время их эффективность в качестве мощного источника энергии со стабильными показателями отдачи весьма спорна.

Аккумуляторы энергии сжатого газа

Пневматический инструмент, газопоршневые генераторы, небольшие кары – вот краткий список устройств, которые используют энергию сжатого газа. Устройство накопителя энергии знакомо практически всем. Это надежная, прочная колба из стали, в которую под огромным давлением закачивается газ.

Уровень выхода энергии накопителя сжатого газа нестабилен. Он велик, пока давление внутри баллона близко к максимуму. И снижается по мере расходования газа. Для стабилизации выхода используются редукторы. Они обеспечивают постоянное давление на выходе, что не только создает оптимальные условия работы потребителя, но и продлевает срок эффективного расходования запаса газа.

Накопители энергии сжатого газа применяются и в роли компенсаторов. Стабилизация работы компрессора производится при помощи расширительной емкости. В нее закачивается газ основным двигателем, поддерживается конкретное давление.

При использовании энергии пневмоинструментом, компрессор может включаться периодически, поддерживая стабильное состояние системы. Основная мощность поступает именно из накопителя, расширительного баллона, совмещенного с редуктором.

Главное достоинство аккумулятора сжатого газа – простота манипулирования. Соблюдается некий термический баланс, когда в режиме компенсатора выделенное тепло при сжатии газа соответствует количеству энергии при расширении рабочего тела.

К другому плюсу относится надежность инженерного решения. Прочность баллона такова, что он может заправляться неоднократно, служить на протяжении десятков лет.

Третий плюс – при наличии надежной перекрывающей арматуры или запайки емкости, газ может сохранять свои параметры и энергетику очень долго.

Накопители электрической энергии

Аккумуляцию электроэнергии можно проводить разными способами. Сегодня к самым распространенным и широко используемым средствам относятся конденсатор, ионистор, химические преобразователи, накопители заряда активных частиц.

Конденсатор

Данный класс аккумулятора электрической энергии – знакомое всем устройство, конструкцию, так называемой, лейденской банки проходят еще в школьном курсе физики. Заряд накапливается на двух пластинах. Современные конденсаторы имеют прокладку, изготовленную из полимера с высокими показателями пробоя. Это позволяет:

  • накапливать большое количество энергии;
  • работать большими значениями напряжения;
  • гарантировать безопасность использования;
  • обеспечить малые размеры накопителя.

Соединенные параллельно элементы позволяют построить батарею с нужным показателем емкости. Данный тип накопителя не может сохранять энергию долго без потерь. К тому же, собирается ее довольно мало. Но при малом потреблении конденсатор может быть достаточно эффективен. Сегодня именно такие накопители используют в аварийных светодиодных лампах.

Во время питания конденсатор заряжается, при отсутствии энергоснабжения светильник работает в течение получаса, чтобы люди могли принять меры к устранению причин перебоя, лечь спать или перевести оборудование в режим консервации.

Ионистор

Ионисторы, или, как их еще называют, суперконденсаторы, используют несколько другую схему накопления энергии. Здесь заряд распределяется в объеме рабочего тела в виде заряженных частиц.

В результате достигаются огромный (по сравнению с конденсаторами) срок хранения энергии и емкость, но наблюдается крайняя чувствительность к температуре.

Чем ниже температура рабочей среды, тем меньше отдача тока от накопителя энергии.

Аккумуляторы химического преобразования

Электрохимическая ячейка – основа большинства автомобильных, мотоциклетных и других привычных типов аккумуляторов. Схема работы накопителя проста:

  • в результате взаимодействия пластины металла и кислоты образуются заряженные ионы;
  • в ходе работы соли осаждаются на пластине из катализатора;
  • по мере понижения насыщенности электролита аккумулятор истощается – уровень выдачи энергии снижается.

При зарядке происходит обратный процесс. Электролиз восстанавливает показатели электролита, переносит металл на пластину-донор. Достоинств у электрохимического аккумулятора множество. Можно получить стабильный и высокий выходной ток, что ценно для пуска мощного оборудования. Легко создать устройство с высокой емкостью, полезное для долгой работы различного оборудования.

К недостаткам электрохимической ячейки классического типа относится конечное число циклов заряда-разряда. Некоторое количество солей металла становятся инертными, пластины приходят в негодность, истощается электролит.

Данные недостатки в большой степени нейтрализованы в гелевых батареях. Этот современный источник энергии содержит коллоидный электролит. В нем лучше проходят процессы образования ионов. Но есть и недостаток – повышается чувствительность к температуре.

При ее понижении гель твердеет, показатель отдачи тока падает.

В качестве заключения

Накопители разного типа энергии можно рассматривать очень долго. Это механические – различные пружины. Кинетические – маховики большой массы, используемые, например, в троллейбусах.

Аккумуляторы с разным типом носителя ионов – литиевые, никель-марганцевые, кадмиевые.

Но использование любого типа накопителя, прежде всего, обуславливается балансом между его характеристиками и показателями потребления энергии.

Источник: https://ekoenergia.ru/akkumulyatory/nakopitel-energii.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.